ХАРЬКОВ МЕДИЦИНСКИЙ. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Изучение технологических и физико-химических свойств гомеопатических препаратов Chelidonium /В. А. Соболева, Л. Ю. Клименко/Зеленин Ю. В.В. А. Соболева, Л. Ю. Клименко Интенсивное развитие медицины и фармации в последние годы способствует возрастанию внимания врачей и фармацевтов к ряду оригинальных направлений медицины, в частности к гомеопатии. Длительное время даже в так называемой просвещенной Европе гомеопатия находилась на нелегальном положении. Практикующих врачей лишали возможности вести прием, если появлялись данные об их причастности к гомеопатии. И хотя родиной гомеопатии принято считать Германию, откуда был родом ее основоположник Самуил Ганеман, своим вторым рождением она обязана Америке. Именно в США впервые появились официально зарегистрированные гомеопатические препараты. Считается, что основа механизма действия гомеопатических средств лежит на уровне биофизических процессов, и поэтому качество их определяется в первую очередь соблюдением методики приготовления — надлежащее время растираний и встряхиваний, последовательность разведения и т. д., что достигается обязательным приготовлением препарата вручную. В XIX веке в США были предприняты попытки механизировать процесс приготовления дилюций. Но после контроля качества этих препаратов более точными физико-химическими методами было показано, что, например, разведение ×10 с помощью машины соответствует разведению ×3, приготовленному вручную. После официального разрешения гомеопатии в Украине практически сразу же были развернуты масштабные исследования с целью разработки нормативно-технической документации на гомеопатические препараты, включающей контроль качества именно по физико-химическим параметрам. Связано это и с тем широким ассортиментом гомеопатических препаратов, как зарубежных, так и отечественных фирм, который представлен в настоящее время в аптеках Украины. Традиционно качество гомеопатических препаратов регламентируется “Руководством по приготовлению гомеопатических средств” Вильмара Швабе, но в нем описывается в основном контроль качества для базисных препаратов, мы же зачастую имеем дело с препаратами в различных разведениях. Подобные исследования гомеопатических средств ведутся в Национальной фармацевтической академии Украины на кафедре аптечной технологии лекарств с курсом гомеопатии. Особое внимание уделяется физико-химическому анализу содержания биологически активных веществ в различных препаратах из растительного и животного сырья. Целью наших исследований является подробное изучение препаратов из чистотела обыкновенного и, исходя из данных, полученных нами ранее при исследовании базисного гомеопатического препарата Chelidonium, подбор наиболее чувствительных качественных реакций и наиболее оптимальных методов хроматографирования и систем растворителей, которые могут быть применены в экспресс-анализе для внедрения их в дальнейшем в практику аптек и контрольно-аналитических лабораторий. Нами приготовлены матричная настойка Chelidonium (согласно §3 руководства В. Швабе) из свежего сырья, тинктура ×1 (из настойки), дилюции до четвертого десятичного разведения, насыщенные гранулы ×3, тритурация ×1 и 5% мазь. Для проведения физико-химического анализа из мази, гранул и тритурации получали спиртовые извлечения. Как уже сообщалось [5], нами был проведен контроль качества матричной настойки Chelidonium по основным технологическим параметрам: плотность, концентрация спирта, содержание экстрактивных веществ, окраска, вкус, запах и капиллярно-люминесцентный анализ [2, 6, 9]. Результаты показали, что по технологическим свойствам базисный препарат отвечает требованиям частной статьи [9]. Аналогично были проверены технологические свойства приготовленных гомеопатических препаратов из чистотела обыкновенного. В таблице 1 представлена сравнительная характеристика зон, полученных в ходе капиллярно-люминесцентного анализа для матричной настойки Chelidonium и тинктуры ×1. Таблица 1 Результаты капиллярно-люминесцентного анализа гомеопатических препаратов Chelidonium
Необходимо отметить, что анализ лекарственного средства только по технологическим параметрам не всегда является вполне достоверным. Поэтому основное внимание уделялось химическому анализу гомеопатических препаратов Chelidonium. В предыдущих исследованиях [5] нами было подтверждено наличие в матричной настойке тех классов биологически активных веществ, которые, исходя из данных, приведенных в научной литературе, накапливаются в чистотеле в процессе развития — алкалоиды, флавоноиды, сапонины, органические кислоты и различные азотсодержащие соединения. В данной работе приведены результаты исследований по обнаружению этих классов природных соединений в различных гомеопатических препаратах Chelidonium. Изучение химического состава исследуемых объектов проводилось с помощью качественных реакций на различные группы биологически активных веществ, а также с помощью хроматографических методов анализа [4, 7, 8]. С помощью качественных реакций было подтверждено наличие следующих групп природных соединений:
Следует отметить, что наиболее четкая картина качественного определения наблюдается только после упаривания и сгущения дилюций и извлечений из гранул, мази и тритурации. Хроматографическое обнаружение указанных групп природных соединений проводилось методами тонкослойной хроматографии, круговой и восходящей хроматографии на бумаге [2, 4, 7, 8]. Исходя из данных, полученных при хроматографировании матричной настойки, были определены системы растворителей, дающие наиболее четкое разделение всех фракций биологически активных веществ. Для анализа фенольных соединений были применены: хроматография на пластинках с закрепленным слоем сорбента “Silufol UV-254” и “Armsorb” и круговая хроматография на бумаге в системах растворителей н-бутанол—уксусная кислота—вода (4:1:2) и 15% уксусная кислота; восходящая бумажная хроматография в системе БУВ (4:1:2). Хроматографирование проводили в присутствии “свидетелей” — длина пробега составляла 11 см при ТСХ, 21,5 см при восходящей хроматографии на бумаге и 5,5 см — при круговой бумажной хроматографии. Хроматограммы высушивали и исследовали в дневном и УФ-свете до и после проявления парами аммиака, 10% водно-спиртовым раствором гидроксида калия и 1% спиртовым раствором алюминия хлорида. Были обнаружены от 2 до 7 веществ фенольного характера в матричной настойке, 3 вещества в тинктуре ×1 и одно вещество в дилюции ×2. Наиболее точные и достоверные результаты были получены при использовании метода круговой хроматографии на бумаге. После сравнения значений Rf и окраски пятен с этими же данными для “свидетелей” можно говорить о присутствии гликозидов кверцетина и оксикоричных кислот. Более подробные результаты представлены в таблице 2. Таблица 2 Результаты хроматографического определения фенольных соединений в препаратах Chelidonium методом круговой хроматографии на бумаге
Хроматографическое исследование алкалоидов и сапонинов проводилось методом ТСХ на пластинках “Silufol UV-254” и “Armsorb”. При анализе использовались системы растворителей хлороформ–этанол (9:1) и бутанол, насыщенный водой—ледяная уксусная кислота (100:5) — для алкалоидов и изопропанол—вода—хлороформ (30:10:5) — для сапонинов. Проявление хроматограмм проводили парами йода — для обнаружения алкалоидов и спиртовым раствором фосфорно-вольфрамовой кислоты — для определения сапонинов. Алкалоиды, предварительно переведенные из солей в основания, обнаруживались в виде коричнево-фиолетовых пятен в тинктуре ×1 и дилюции ×2 и извлечениях из мази и тритурации. Наличие сапонинов подтвердилось в тинктуре ×1 и дилюции ×2. Проявлялась данная группа БАВ в виде темно-зеленых пятен со значениями Rf 0,22 и 0,77. Ранее [5] нами было подтверждено присутствие в матричной настойке Chelidonium аминокислот. Результаты этого анализа представлены в таблице 3. Хроматографирование проводилось с использованием методов ТСХ и восходящей бумажной хроматографии в системах растворителей н-бутанол—уксусная кислота—вода (4:1:2), этанол—вода (95:5), изопропанол—уксусная кислота—вода (75:15:10) в присутствии стандартных образцов аминокислот. Проявляли хроматограммы 0,2% спиртовым раствором нингидрина и выдерживали в термостате при 100–105°С в течение 15 минут. Аминокислоты проявлялись в виде розово-фиолетовых и фиолетовых пятен различной интенсивности окраски. Предварительно были идентифицированы некоторые свободные аминокислоты (аспарагин, аргинин, аспарагиновая кислота, глицин, валин, триптофан, норвалин, α-фенилаланин и β-фенилаланин). Предпринятые попытки обнаружить аминокислоты в гомеопатических препаратах Chelidonium давали 3 пятна в тинктуре ×1, 2 пятна в дилюции ×2 и по 1 пятну в извлечениях из тритурации и мази. Однако следует иметь в виду, что некоторые аминокислоты имеют близкие значения Rf и схожую окраску пятен, на результаты анализа также оказывает влияние наличие в сырье коротких полипептидов, значения Rf которых могут совпадать с этими величинами для свободных аминокислот. Таблица 3 Результаты хроматографического исследования аминокислотного состава препаратов Chelidonium методом восходящей бумажной хроматографии в системе н-бутанол—уксусная кислота—вода (4:1:2)
Подводя итог данного этапа исследований, можно предложить для анализа гомеопатических препаратов Chelidonium в условиях аптек и контрольно-аналитических лабораторий следующие рекомендации:
Выводы
Литература
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
©2004-2005 LotusSoft. Все права защищены. |